
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Machine Unlearning: Solutions and Challenges
Jie Xu, Zihan Wu, Cong Wang Fellow, IEEE, and Xiaohua Jia Fellow, IEEE

Abstract—Machine learning models may inadvertently mem-
orize sensitive, unauthorized, or malicious data, posing risks
of privacy violations, security breaches, and performance de-
terioration. To address these issues, machine unlearning has
emerged as a critical technique to selectively remove specific
training data points’ influence on trained models. This paper
provides a comprehensive taxonomy and analysis of machine
unlearning research. We categorize existing research into exact
unlearning that algorithmically removes data influence entirely
and approximate unlearning that efficiently minimizes influence
through limited parameter updates. By reviewing the state-
of-the-art solutions, we critically discuss their advantages and
limitations. Furthermore, we propose future directions to advance
machine unlearning and establish it as an essential capability for
trustworthy and adaptive machine learning. This paper provides
researchers with a roadmap of open problems, encouraging
impactful contributions to address real-world needs for selective
data removal.

Index Terms—Machine Unlearning; Machine Learning Secu-
rity and Privacy; the Right to be Forgotten

I. INTRODUCTION

THE rapid expansion of Machine Learning (ML) has led to
remarkable advancements in tasks such as image recogni-

tion [1], natural language processing [2], and recommendation
systems [3], significantly impacting various aspects of people’s
lives [4]. However, the wide adoption of machine learning
has raised significant concerns about potential privacy risks,
security vulnerabilities, and accuracy deterioration in dynamic
settings [5]–[7].

To address these issues, machine unlearning has emerged
as a promising technique. Machine unlearning refers to the
process of selectively removing the influence of specific train-
ing data points on an already trained machine learning model,
making the updated model behave the same as a model that
was never trained on that data [8]. It provides a subtractive ca-
pability to adapt models by removing unauthorized, malicious,
or outdated data points without full retraining.

Machine unlearning facilitates several critical applications.
First, machine unlearning enforces privacy regulations and
protects user privacy. Laws such as the European Union (EU)
General Data Protection Regulation (GDPR) [9] and Califor-
nia Consumer Privacy Act (CCPA) [10] have introduced the
Right to Be Forgotten, allowing users to request removing their
personal data from companies’ trained models [11], [12]. By
enabling selective data removal, machine unlearning provides
a practical way to enforce these legal rights regarding personal
data removal.

Second, machine unlearning enhances model security and
robustness against adversarial attacks. Machine learning mod-
els are vulnerable to adversarial attacks such as data poisoning
attacks, where adversaries inject crafted malicious data into
the training set to manipulate the model’s behavior [13],

[14]. By removing harmful manipulated data points, machine
unlearning helps defend models against such vulnerabilities.

Third, machine unlearning improves the adaptability of
models over time in dynamic environments. Models trained
on static historical data can become outdated as the data
distributions shift over time [15]. For example, customer
preferences may change in the recommendation system. By
selectively removing outdated or unrepresentative data, ma-
chine unlearning enables the model to maintain performance
even as the environment evolves [16].

Based on the degree of influence removal achieved, machine
unlearning methods can be categorized into Exact Unlearning
and Approximate Unlearning [17]. Exact unlearning aims to
completely remove the influence of specific data points from
the model through algorithmic-level retraining [17], [18].
The advantage is the model will behave as if the unlearned
data had never been seen. While providing strong guaran-
tees of removal, exact unlearning usually demands extensive
computational resources and is primarily suitable for simpler
models. On the other hand, approximate unlearning focuses
on efficiently minimizing the influence of target data points
through limited parameter-level updates to the model [17],
[18]. While not removing influence entirely, approximate
unlearning significantly reduces computational and time costs.
It enables practical unlearning applications even for large-scale
and complex machine learning models, where exact retraining
is infeasible.

In this paper, we provide a comprehensive overview of
machine unlearning, covering pioneering and state-of-the-
art techniques for both exact and approximate unlearning.
We critically analyze existing research, highlight advantages
and limitations, identify research gaps, and suggest future
directions. Our goal is to provide a useful roadmap to make
further impactful contributions that address real-world needs
for adaptive and trustworthy machine learning systems.

The main contributions of this paper are:

• We provide a comprehensive taxonomy and structured
overview of machine unlearning research, categorizing
techniques into exact and approximate methods. The
taxonomy covers a broad range of existing works, estab-
lishing a structured understanding of this emerging field
for researchers.

• We give an in-depth critical analysis of existing machine
unlearning techniques, highlighting their strengths, lim-
itations, and challenges. This analysis provides valuable
insights into theoretical and practical obstacles, guiding
future research toward impactful open problems.

• We identify the critical issues on machine unlearning and
suggest promising future research directions to advance
machine unlearning. These suggestions expand the appli-

ar
X

iv
:2

30
8.

07
06

1v
1

 [
cs

.L
G

]
 1

4
A

ug
 2

02
3

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

cability of machine unlearning and address its limitations
effectively.

The remainder of this paper is organized as follows. Sec-
tion II provides background and preliminaries. Section II-C5
discusses Naive Retraining, while Section III covers exact
unlearning, and Section IV explores approximate unlearning.
Section V offers a comprehensive discussion on critical issues
of machine unlearning. Section VI outlines potential future
research directions. Finally, Section VII concludes by summa-
rizing key findings.

II. BACKGROUND AND PRELIMINARIES

A. Machine Learning

Machine learning develops algorithms that allow computers
to automatically learn and improve from experience based
on data [4]. Generally, machine learning approaches can
be categorized into three main types: supervised learning,
unsupervised learning, and reinforcement learning [19], [20].

In supervised learning, we are given a training dataset D =
{(xi, yi)}ni=1 consisting of n input-output pairs. Here, xi ∈ X
denotes the input feature vector from the input space X ⊂ Rd,
where d is the dimension of the input features. yi ∈ Y is the
corresponding output variable from the output space Y . The
goal is to learn a model function M parameterized by w that
maps input x to outputs y. This is achieved by minimizing
a loss function F (D;w) =

∑
z∈D f(z;w) that quantifies the

discrepancy between the predicted outputs ŷi = M(xi;w)
and the true outputs yi over the training data. The optimal
parameters w∗ are obtained by:

w∗ = argminw∈H F (D;w) (1)

where H denotes the hypothesis space containing candidate
models.

1) Ensemble Learning: Ensemble learning combines mul-
tiple individual models, denoted as weak learners, together to
improve prediction and decision-making [21]. By exploiting
complementary knowledge and reducing bias and variance,
ensemble methods can achieve greater accuracy and robustness
compared to single models [22]. The diversity and competence
of the component models, size and quality of training data,
and ensemble techniques used are key factors determining
effectiveness [23]. These principles of ensemble learning have
also been adapted and applied in various designs for exact
unlearning.

2) Explainable AI: Explainable Artificial Intelligence (AI)
techniques aim to increase the transparency and explainability
of complex models, making the relationship between training
data and model predictions clear [24], [25]. This facilitates
us to understand how removing specific training data affects
model predictions [26].

Influence function is a tool in explainable machine learning,
which quantifies the influence of individual training points on
a model’s predictions [27]. The influence of a point z′ ∈ D
on model parameters w can be assessed by slightly increasing
its weight during training:

ŵϵ;z′
def
= arg min

w∈H

1

n

n∑
i=1

f (zi;w) + ϵf(z′;w). (2)

The influence function I measures the parameter change with
respect to changes in the weight of z′ and is shown as Eq.(3).

I(z′; f, ŵ,D)
def
=

dŵϵ;z′

dϵ

∣∣∣∣
ϵ=0

= −H−1
ŵ ∇wf(z′; ŵ), (3)

where Hŵ is the Hessian, f(·; ŵ) is the loss function, and
∇wf(·; ŵ) is the gradient of the loss function. By setting
ϵ = −1/n, influence functions can approximate the effect of
removing z′ without retraining [26].

B. Machine Learning Attacks

1) Data Poisoning Attacks: Data poisoning attacks inject
manipulated data into the training dataset with the goal of
causing the resulting models to make skewed predictions [13],
[14]. This exploits the reliance of statistical models on input
data for learning by tampering with the training data. Com-
mon techniques include adding noisy samples, flipping output
labels, and altering feature values [28]. For example, the
attacker can insert poisoned points near the decision boundary
to increase test errors or modify features of particular inputs to
induce misclassifications. The model trained on the poisoned
data will then make predictions based on the contaminated
dataset, which can lead to distorted or incorrect results that
undermine the integrity of the model [13].

2) Membership Inference Attacks: Membership Inference
Attacks (MIAs) aim to determine whether a given data record
was part of the training set of a machine learning model [29],
[30]. They exploit overfitting, as overfitted models tend to
have higher confidence in inputs from their training set [31].
The attacker trains shadow models on their labeled data, then
compares the target model’s confidence score on the input to
the shadow models’ scores. Higher confidence in the target
model indicates the input likely belonged to its training set.
Thus, MIAs can reveal sensitive training data, posing a threat
to privacy.

C. Machine Unlearning

1) Problem Definition: Machine unlearning refers to the
process of removing the influence of specific training data
points on an already trained machine learning model [32].
Formally, given a model with parameters w∗ trained on dataset
D using learning algorithm A, and a subset Df ⊆ D to be
removed, the machine unlearning algorithm U(A(D),D,Df)
aims to obtain new parameters w− by removing the effects of
Df while preserving performance on D \ Df .

2) Application Scenarios of Machine Unlearning: Machine
unlearning enables selectively removing specific data points
from trained ML models. This subtractive capability supports
key applications:

• Privacy Protection: Machine unlearning helps enforce
privacy rights and enhances privacy protection [5], [33].
It allows removing users’ personal data from trained
models to comply with regulations such as GDPR and
CCPA, which grant users the right to remove their data
[33], [34]. By removing training data points, machine
unlearning also reduces the attack surface for membership

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

inference attacks that aim to determine if certain data was
used in training [35].

• Improving Security: Machine learning models can be vul-
nerable to data poisoning attacks, where adversaries inject
malicious data into the training set to manipulate the
model’s behavior. Machine unlearning improves security
by removing poisoned data points, making the system
more robust against such attacks [28], [35], [36].

• Enabling Adaptability: Models trained on static datasets
may not adapt well as the underlying data distribution
changes over time, resulting in outdated or inaccurate
models [15], [37]. Machine unlearning facilitates adapt-
ability by removing outdated or unrepresentative data,
keeping the model relevant even as the environment
evolves [16].

3) Challenges in Machine Unlearning: Machine unlearning
faces challenges from inherent properties of ML models as
well as practical implementation issues:

• Data Dependencies: ML models do not simply analyze
data points in isolation. Instead, they synergistically ex-
tract complex statistical patterns and dependencies be-
tween data points [38]. Removing an individual point can
disrupt the learned patterns and dependencies, potentially
leading to a significant decrease in performance [16],
[32], [39].

• Model Complexity: Large machine learning models such
as deep neural networks can have millions of parameters.
Their intricate architectures and nonlinear interactions
between components make it hard to interpret the model
and locate the specific parameters most relevant to a given
data point [16], [40]. The lack of transparency into how
data influences predictions poses challenges for removing
dependencies.

• Computational Cost: Most machine unlearning tech-
niques require iterative optimization methods such as
gradient descent to adjust parameters after removing data.
This incurs a significant computational cost, which grows
rapidly as the model and dataset size increase [16], [41].
The computational demands may exceed the available
resources when dealing with large-scale datasets and
complex models.

• Privacy Leaks: The unlearning process itself can leak
information in multiple ways [42]. Statistics such as the
time taken to remove a point can reveal information about
it [32], [42]. Changes in accuracy and outputs can also al-
low adversaries to infer removed data characteristics [32],
[43].

• Dynamic Environments: Tracing each data point’s influ-
ence becomes increasingly difficult as the dataset changes
dynamically [11], [37]. Unlearning can also introduce
delays that impede prompt model updates needed for low-
latency predictions.

4) Metrics for Machine Unlearning Algorithms: Several
metrics have been proposed for evaluating the performance
of machine unlearning algorithms.

a) Completeness: This metric evaluates how thoroughly
the unlearning algorithm makes the model remove the target

data. It compares the model’s predictions or parameters before
and after unlearning to quantify the extent of removing. Vari-
ous distance or divergence measures can be used to quantify
the difference between the two models [44]. Representative
measures include L2 distance and KL divergence.
L2 distance measures parameter difference between models

Mw1 with parameters w1 and Mw2 with parameters w2:

L2(Mw1 ,Mw2) =

√√√√ n∑
i=1

(w1 −w2)2. (4)

Smaller L2 distances indicate higher similarity, while larger
distances indicate greater dissimilarity [45].

KL divergence measures difference between prediction dis-
tributions before unlearning P and after unlearning Q [46]:

KL(P ||Q) =
∑

P (x) log

(
P (x)

Q(x)

)
(5)

A smaller KL divergence indicates that the unlearning process
made the model remove the specific data more successfully.

b) Time Efficiency: It can be quantified by comparing
the ratio of time required for naive retraining to the time taken
for unlearning [47]:

E(U) = Time for A(D \ z′)
Time for U

, (6)

where A(D \ z′) represents the model after naive retraining,
and U represents the model after unlearning. Higher efficiency
scores indicate faster unlearning. This measure becomes par-
ticularly relevant in real-time and dynamic scenarios where
rapid unlearning is required to enable agile and responsive
systems [16].

c) Privacy: Certified removal [48] is an important pri-
vacy metric for approximate unlearning solutions inspired by
differential privacy [49]. It offers a theoretical assurance that
a model, after specific data removal, is indistinguishable from
a model that was never trained on that data. This property
implies that an adversary cannot extract information about the
removed training data from the model, rendering membership
inference attacks on the removed data unsuccessful. This
property can be represented in two ways: ϵ-certified removal
and its more relaxed version, (ϵ, δ)-certified removal.

Definition 1 (ϵ-certified removal). Given ϵ > 0, a learning
algorithm A(·), a dataset D, a training data point to remove
z′ = (x′, y′), a subset of the hypothesis set H, and a removal
mechanism U , the ϵ-certified removal is defined as:

e−ϵ ≤ P (U(A(D),D, z′) ∈ H)

P (A(D \ z′) ∈ H)
≤ eϵ. (7)

Definition 2 ((ϵ, δ)-certified removal). Given ϵ > 0 and δ > 0,
the (ϵ, δ)-certified removal is defined as:

P (U(A(D),D, z′) ∈ H) ≤ eϵP (A(D\z′) ∈ H) + δ,

P (A(D\z′) ∈ H) ≤ eϵP (U(A(D),D, z′) ∈ H) + δ. (8)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 1: Illustration of Naive Retraining and Machine Unlearn-
ing

5) Naive Retraining: Naive retraining, also known as re-
training from scratch, is to remove the data point from the
training dataset and retrain the model again. It is often used
as a baseline to evaluate unlearning techniques.

Definition 3 (Naive Retraining). Given a learning algorithm
A(·), dataset D, and a training data point z′ = (x′, y′) to be
removed, naive retraining involves retraining on the modified
dataset D \ z′. Mathematically, it can be represented as:

A(D \ z′). (9)

As shown in Figure 1, naive retraining first discards the
existing model. Then, a new model is trained from scratch
with the remaining training data after removing the data. This
involves initializing a model with random parameters and
training it on the remaining data using an appropriate learning
algorithm to minimize a loss function. By excluding the target
data, the retraining process removes information embedded in
the model.

Naive retraining presents several drawbacks: it is computa-
tionally intensive due to complete parameter re-optimization,
time-consuming for complex models and large datasets, and
relies on the original training data, which limits its feasibility
when access is restricted.

III. EXACT UNLEARNING

Exact unlearning takes a more efficient strategy than naive
retraining. This approach specifically isolates the influence of
particular data points on the model, necessitating only the
retraining of the affected components instead of the entire
model. In this section, we present an overview of exact
unlearning through the SISA framework, followed by methods
based on the SISA framework and other variations of exact
unlearning.

A. Overview of Exact Unlearning

The Sharding, Isolation, Slicing, and Aggregation
(SISA) [41] framework is a general approach for exact
unlearning. By sharding, isolating, slicing, and aggregating
training data, SISA enables targeted data removal without
full retraining. It provides an efficient solution considering
the tradeoffs in machine unlearning systems.

Fig. 2: SISA Framework

The key idea of SISA is to divide the training data into
multiple disjoint shards, with each shard for training an inde-
pendent sub-model. The influence of a data point is isolated
within the sub-model trained on its shard. When removing a
point, only affected sub-models need to be retrained.

As shown in Figure 2, the implementation of SISA includes
four key steps.
(1) Sharding: The training data is divided into multiple

disjoint subsets, called ‘shards’. Each shard is used to
train a separate sub-model.

(2) Isolation: The sub-models are trained independently of
each other, ensuring that the influence of a data point is
isolated to the model trained on the shard containing that
data point.

(3) Slicing: Within each shard, the data is further divided
into ‘slices’. Models are incrementally trained on these
slices. The parameters are stored before including each
new slice to track the influence of unlearned data points
at a more fine-grained level.

(4) Aggregation: The sub-models trained on each shard are
aggregated to form the final model. Aggregation strate-
gies, such as majority voting, allow SISA to maintain
good performance.

When unlearning a specific data point, only the sub-models
associated with shards containing that data need retraining.
The retraining can start from the last parameter saved that
does not include the data point to be unlearned.

SISA offers several advantages over naive retraining. First,
it reduces the computational cost and time required for un-
learning by training models on smaller shards, retraining only
the affected models, and incrementally updating models using
slices. Second, it maintains prediction accuracy by aggregating
the knowledge of the sub-models. Third, SISA provides a
flexible and scalable solution, allowing the system to han-
dle evolving unlearning requests without compromising the
model’s overall performance.

However, SISA does have limitations. First, the effective-
ness of SISA depends on the specific characteristics of the
learning algorithm of sub-models and the data. For example, it
may not work well for models that learn complex interactions
between data points or for data that is not easily divisible into
independent shards. Second, SISA requires additional storage
resources for keeping separate sub-models and tracking each
data point’s influence within each slice. Third, the model’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

generalization ability could be degraded due to isolated train-
ing and the tradeoffs involved in aggregation strategies.

In the next subsection, we discuss some notable improve-
ments and adaptations of SISA for different types of models,
including random forest, graph-based models, and k-means.

B. Exact Unlearning based on SISA Structure
1) Exact Unlearning for Random Forest: Exact unlearning

for random forest can be seen as a specific application of the
SISA framework. Each tree in the forest is trained on a differ-
ent subset of data, acting as a shard in the SISA framework.
The predictions of the individual trees are aggregated to obtain
the final prediction of the random forest. The influence of a
data point is isolated within the trees trained on the subset
containing that data point. When unlearning a data point, only
the trees trained on the relevant subset require retraining.

DaRE [50] proposes a variant of random forest called Data
Removal-Enabled (DaRE) forest. DaRE forest uses a two-
level approach with random and greedy nodes in the tree
structure. Random nodes, located in upper levels, choose
split attributes and thresholds uniformly at random, requiring
minimal updates as they are less dependent on data. Greedy
nodes, found in lower levels, optimize splits based on criteria
such as the Gini index or mutual information. DaRE trees
cache statistics at each node and training data at each leaf,
allowing for efficient updates of only necessary subtrees when
data removal requests are received. This caching and use of
randomness improve the efficiency of unlearning.

HedgeCut [39] focuses on unlearning requests with low la-
tency in extremely randomized trees. It introduces the concept
of split robustness to identify split decisions that may change
with removed data. HedgeCut maintains subtree variants for
such cases, and when unlearning a data point, it replaces the
corresponding split with the corresponding subtree variants.
This operation is quick and straightforward, ensuring a short
delay in the unlearning process.

2) Exact Unlearning for Graph-based Model: The inter-
connected structure of graph data makes it challenging for
graph-based model unlearning, as influence from any single
data point spreads across the entire graph. This necessitates the
development of specialized graph-based unlearning methods.
Exact unlearning for graph-based models aims to efficiently
and accurately remove the influence of individual data points
on model predictions while accounting for the unique charac-
teristics of graph-structured data.

Two pioneering graph-based unlearning methods, Gra-
phEraser [51] and RecEraser [52], extend the SISA framework
to graph data but use different partitioning and aggregation
strategies. GraphEraser is designed for Graph Neural Networks
(GNNs) unlearning. It consists of three phases: balanced graph
partition, shard model training, and shard model aggregation.
The graph partition algorithms focus on preserving the graph
structural information and balancing the shards resulting from
the graph partition. The learning-based aggregation method
optimizes the importance score of the shard models to improve
the global model utility. When a node needs to be unlearned,
GraphEraser removes the node from the corresponding shard
and retrains the shard model.

While GraphEraser handles general graph data, it may be
less optimal for recommendation systems, where collaborative
information across users and items is crucial. RecEraser [52]
is specialized for recommendation tasks, where user-item
interactions are represented in graphs. It extends the SISA
framework by proposing three data partition methods based
on users, items, and interactions to divide training data into
balanced groups. RecEraser uses an adaptive aggregation
method to combine the predictions of the sub-models. This
considers both the local collaborative information captured
by each sub-model and the global collaborative information
captured by all sub-models. Upon receiving a data unlearning
request, only the corresponding submodel and aggregation
need retraining in RecEraser. Consequently, RecEraser can
make accurate recommendations after unlearning user-item
interactions compared to the static weight of sub-models in
GraphEraser.

3) Exact Unlearning for k-means: DC-k-means [53] adopts
the SISA framework but uses a tree-like hierarchical aggre-
gation method. The training data is randomly divided into
multiple subsets, each represented by a leaf node in a perfect
w-ary tree of height h. A k-means model is trained on each
subset, with each leaf node corresponding to a k-means model.
The final model is an aggregation of all the k-means models
at the leaf nodes of the tree, achieved by recursively merging
the results from the leaf nodes to the root. To unlearn a data
point, the relevant leaf node is located, and the corresponding
k-means model is updated to exclude that data point. The
updated model then replaces the old model at the leaf node,
and the changes propagate up the tree to update the final
aggregated model.

4) Exact Unlearning for Federated Learning (FL):
KNOT [54] adopts the SISA framework for client-level asyn-
chronous federated unlearning during training. A clustered
aggregation mechanism divides clients into multiple clusters.
The server only performs model aggregation within each
cluster, while different clusters train asynchronously. When
a client requests to remove its data, only clients within the
same cluster need to be retrained, while other clusters are
unaffected and can continue training normally. To obtain an
optimal client-cluster assignment, KNOT formulates it as a
lexicographic minimization problem. The goal is to minimize
the match rating between each client and assigned cluster,
considering both training speed and model similarity. This
integer optimization problem can be efficiently solved as a
Linear Program(LP) using an off-the-shelf LP solver.

5) Improvements of SISA: ARCANE [18] is designed to
overcome the limitations of SISA, aiming to accelerate the
exact unlearning process and ensure retrained model accuracy.
Unlike SISA’s random and balanced data partition, ARCANE
divides the dataset into class-based subsets, training sub-
models independently using a one-class classifier. This ap-
proach reduces accuracy loss by confining unlearning influence
to a single class. ARCANE also introduces data preprocessing
methods to reduce retraining costs. These methods include
representative data selection, model training state saving,
and data sorting by erasure probability. Representative data
selection removes redundancies and focuses on selecting the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I: Exact Unlearning Methods based on SISA

Paper Goal Design Ideas Strengths Weaknesses

SISA
[41]

Efficient unlearn-
ing for general
models

• Sharded, isolated, sliced,
aggregated training

• Applicable to any model
• Improves unlearning efficiency
• Scalable

• Breaking data dependencies
• Additional storage cost for

model parameters
• Accuracy degradation

DaRE
[50]

Efficient unlearn-
ing for random
forest

• Use cached statistics to only
retrain affected subtrees

• Consider subsets of thresholds
per attribute

• Achieves efficiency by
retraining affected subtrees

• Analyzes the effect of layers
and thresholds

• Additional storage cost for
caching statistics

• Worst case performance no
better than retraining

HedgeCut
[39]

Low-latency un-
learning for en-
semble of ran-
dom forest

• Use split robustness to identify
splitting decisions

• Prepare subtree variants for
non-robust splits

• Low-latency unlearning
• Predictive accuracy similar to

random forest

• Rely on the accuracy of
predicted unlearning requests

• Storage cost for subtree
variants

DC-k-means
[53]

Efficient unlearn-
ing for k-means

• Divide-and-Conquer approach
• Theoretical guarantees on

removal efficiency
• Negligible quality loss

• State storage cost
• High removing time complexity

in high dimensions

GraphEraser
[51]

Efficient unlearn-
ing for for GNNs

• Community detection for
balanced sharding

• Shard model importance scores

• Maintains graph structure
• Balanced partitioning ensures

unlearning efficiency

• Additional cost of maintaining
massive shards.

• Not satisfy the adaptive setting

RecEraser
[52]

Efficient unlearn-
ing for recom-
mender systems

• Different data partition
strategies

• Attention-based adaptive
aggregation method

• Efficient unlearning with
balanced data partition

• Good global model utility with
adaptive aggregation

• Specific to recommendation
task

• Open problem in the batch
setting

KNOT [54]
Federated
unlearning
during training

• Cluster clients and perform
aggregation within clusters

• Clusters train asynchronously

• Limits retraining to a cluster
• Asynchrony allows unaffected

clusters to continue training

• Performance relies on cluster
assignments

• Asynchrony can negatively
impact model accuracy

ARCANE
[18]

Efficiently
and accurately
unlearning

• Multiple one-class classification
tasks

• Data preprocessing

• Maintains accuracy even with
large unlearning requests

• Data preprocessing accelerates
unlearning

• Only applies to supervised
models

• Rely on preprocessing for
efficiency

most informative subset of the training set. Training state
saving allows for the reuse of previous calculation results,
further improving efficiency. Additionally, sorting the data by
erasure probability enhances the speed of handling unlearning
requests.

C. Non-SISA Exact Unlearning

Cao et al. [16] were inspired by statistical query learning
and proposed an intermediary layer called ’summations’ to
decouple machine learning algorithms from the training data.
Instead of directly querying the data, learning algorithms rely
on these summations. This allows the removal of specific
data points by updating the summations and computing the
updated model. The unlearning process involves two steps.
First, the feature set is updated by excluding the data point to
be removed and re-scoring the features. The updated feature
set is generated by selecting the top-scoring features. This
process is more efficient than retraining as it does not require
examining each data point for each feature. Second, the model
is updated by removing the corresponding data if a feature
is removed from the feature set or computing the data if a
feature is added. Simultaneously, summations dependent on
the removed data point are updated, and the model is adjusted
accordingly.

Liu et al. [55] propose a rapid retraining approach for
FL. When a client requests data removal, all clients per-
form local data removal, followed by a retraining process
on the remaining dataset. This process utilizes a first-order
Taylor approximation technique based on the Quasi-Newton

method and a low-cost Hessian matrix approximation method.
The proposed approach effectively reduces computational and
communication costs while maintaining model performance,
providing an efficient realization of the right to be forgotten
in FL.

D. Comparisons and Discussions
The comparison of different exact unlearning methods is

shown in Table I. We evaluate their strengths and weaknesses
in terms of storage cost, assumptions, model utility, computa-
tional cost, scalability, and practicality. Our goal is to provide
a clear assessment to help guide future research and select
suitable unlearning methods for different applications.
(1) Additional Storage Cost: Exact unlearning methods rely

on substantial additional storage required for caching
model parameters, statistics, or intermediate results. For
instance, SISA requires the storage of model parameters
for each shard and slice, while HedgeCut requires the
storage of subtrees variants. This hinders scalability to
large models or frequent unlearning requests. Developing
low-storage approaches would be beneficial.

(2) Strong Assumptions: Some methods make strong as-
sumptions about the learning algorithm or data charac-
teristics. SISA may struggle with highly dependent data,
while statistical query learning requires algorithms to be
expressed in a summation form. Methods tailored to spe-
cific models, such as DaRE and HedgeCut, GraphEraser,
and RecEraser, have limited applicability. More flexible
and generalizable techniques are needed.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

(3) Model Utility: Most methods claim they maintain accu-
racy after unlearning but lack thorough analysis across
diverse settings. Rigorous evaluations of different models,
datasets, and removal volumes are imperative to provide
concrete utility guarantees.

(4) Computational Cost: Exact unlearning methods add com-
putational costs during initial training because of multiple
sub-models training and aggregation. It may not be fea-
sible when computational resources are limited.

(5) Managing Evolving Data: Existing methods focus on re-
moving data in fixed training sets. Handling dynamically
changing data with continuous insertion and removal
requests remains an open problem needing incremental
update mechanisms.

In summary, while existing exact unlearning methods enable
efficient and accurate data removal, they have limitations
related to storage, assumptions, utility maintenance, and scal-
ability. The most suitable method depends on the specific
requirements of the machine learning application, including
the data type, model type, and the desired balance between ef-
ficiency and accuracy. Further research should aim to develop
generally applicable techniques with low cost that provably
sustain model accuracy even after repeated unlearning. This
will lead to more robust and practical solutions aligned with
the evolving privacy needs of machine learning systems.

IV. APPROXIMATE UNLEARNING

Approximate unlearning aims to minimize the influence
of unlearned data to an acceptable level while achieving an
efficient unlearning process. It has several advantages over
exact unlearning techniques, including better computational
efficiency, less storage cost, and higher flexibility.

• Computational Efficiency: Exact unlearning methods re-
quire retraining at the algorithm level using remaining
data, which can be computationally expensive, partic-
ularly for large datasets. In contrast, approximate un-
learning focuses on minimizing the data’s influence to
be removed rather than completely removing it. For
example, Guo et al. [48] proposed a method that adjusts
the model parameters based on the calculated influence of
the removed data. This approach is less computationally
intensive than the full re-computation required in exact
unlearning, leading to increased computational efficiency.

• Storage Overhead: Exact unlearning typically requires
storing the training dataset and multiple sub-models,
leading to high storage costs. Conversely, approximate
unlearning, such as the one proposed by Sekhari et
al. [56], only requires storing cheap-to-compute data
statistics. As a result, the storage burden associated with
exact unlearning is significantly alleviated.

• Flexibility: Exact unlearning methods are often tailored
to specific learning models or data structures, limiting
their applicability. On the other hand, many approximate
unlearning are more model-agnostic. They can be applied
to a diverse range of learning algorithms without requir-
ing specific model or data structure modifications. This
enhanced flexibility allows approximate unlearning to be
more widely applicable compared to exact unlearning.

It is important to note that approximate unlearning rep-
resents a tradeoff between unlearning completeness and un-
learning efficiency [16]. In some cases, a slight decrease in
completeness, but a significant speed-up of the unlearning
process and savings in computation and storage costs, is an
acceptable tradeoff. By carefully considering these tradeoffs,
approximate unlearning provides an effective and practical
approach for adapting models to new data and tasks.

A. Overview of Approximate Unlearning

Approximate unlearning is a process that aims to minimize
the influence of unlearned data to an acceptable level rather
than completely removing it. It involves the following key
steps:
(1) Computation of Influence: Calculate the influence of the

data points that need to be unlearned on the original
model. This involves determining how these data points
affect the model’s predictions.

(2) Adjustment of Model Parameters: Modify the model
parameters to reverse the influence of the data being
removed. This adjustment typically involves methods
such as reweighting or recalculating optimal parameters
and modifying the model so that it behaves as if it was
trained on the dataset without the unlearned data points.

(3) Addition of Noise: Carefully calibrated noise is added to
prevent the removed data from being inferred from the
updated model. This step ensures the confidentiality of
the training dataset.

(4) Validation of Updated Model: Evaluate the performance
of the updated model to ensure its effectiveness. This
validation step may involve cross-validation or testing
on a hold-out set to assess the model’s accuracy and
generalization.

By following these steps, approximate unlearning efficiently
reduces the influence of specific data points in a trained
model. This approach provides a practical alternative to exact
unlearning, particularly in scenarios where computational cost,
storage cost, and flexibility are crucial factors.

The subsequent subsections provide more details on spe-
cific approximate unlearning. Section IV-B discusses methods
based on the influence function, while Sections IV-C and
IV-D explore methods based on re-optimization and gradi-
ent update, respectively. Section IV-E introduces methods
specifically designed for graph data, and Section IV-F covers
other notable methods in the field. Each section provides a
detailed summary of the respective methods, discussing their
applications, advantages, and limitations.

B. Approximate Unlearning based on Influence Function of
the Removed Data

Influence functions offer a powerful tool for understanding
the influence of specific training data points on the predictions
of a machine learning model [26]. This understanding facili-
tates an update to the model that effectively unlearns the influ-
ence of certain data points without full retraining. This section
explores representative works leveraging influence functions

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

for approximate unlearning and discusses their applications
and limitations.

The core idea shared by these representative works is to
use the influence function to estimate data points’ influence
for removal. Some works [48], [56]–[60] develop unlearning
algorithms that approximately compute the influence function
of data points on the model parameters, and then update the
parameters to remove the influence of unlearned data points.
Some [56]–[58] also focus on efficiently approximating the
influence functions by considering only relevant parameters
or using sampling because the direct computation of influence
functions can be computationally expensive.

We start by discussing the pioneering work of Guo et
al. [48] and its limitations. Then, we will explore how subse-
quent research has built upon Guo’s work to address these
limitations, particularly by reducing the computational cost
associated with inverting the Hessian matrix. Finally, we will
discuss the future directions of this research field.

Guo et al. [48] first introduced influence functions for
data removal and achieved certified removal of L2-regularized
linear models. Specifically, linear models are usually trained
using a differentiable convex loss function as shown in
Eq.(10).

F (D;w) =
∑
z∈D

f(z;w) +
λn

2
∥w∥22 , (10)

where f(z;w) is a convex loss function. To protect the
information of the removed data points, Guo et al. propose
to add random perturbation [61] during the training process to
protect the gradient information. Thus, the loss function used
for training is as shown in Eq. (11):

Fb(D;w) =
∑
z∈D

f(z;w) +
λn

2
∥w∥22 + b⊤w, (11)

where b is a random vector. The parameters of the model is
w∗, where

w∗ = A(D) = argminw Fb(D;w). (12)

Suppose the data point z′ = (x′, y′) is to be removed
from the training set. The process of Newton update removal
mechanism to remove z′ is as follows:
(1) Calculate the influence of the removed data point on the

model parameters. The loss gradient at z′ is

∆ = λw∗ +∇f(z′;w). (13)

Thus, the influence of z′ on the original model is
−H−1

w∗∆ [26], where Hw∗ is the Hessian of the loss
function

Hw∗ = ∇2F (Dr;w
∗) ,Dr = D \ z′. (14)

This one-step Newton update is applied to the gradient
influence of the removed point z′.

(2) Adjust the model parameters w∗ to removes the influence
of the z′ from the model. The new model parameters w−

are given by
w− = w∗ +H−1

w∗∆. (15)

(3) Perturbation has been added during the training process
as shown in Eq.(11).

(4) Validate the new model by checking the removed data
point’s influence.

Steps (1) and (2) make the new model parameters w−

approximate the original model parameters w∗ as closely as
possible while ensuring the removal of specific data points
from the original dataset. The process also ensures the perfor-
mance of the modified model and minimizes the leakage of
information about the removed data points by adding random
perturbations to the model parameters during training and
bounding the norm of the gradient residual. Thus, the removal
mechanism is a certified-removal mechanism.

While Guo et al. [48] have provided valuable insights into
approximate unlearning, their proposed removal mechanism
has limitations. It requires inverting the Hessian matrix, fails to
work for models with non-convex losses, and has a significant
gap between the data-dependent bound and the true gradient
residual norm. To address these limitations, subsequent re-
search [56]–[58] has made improvements by building on Guo’s
work.

Building upon Guo’s work, Sekhari et al. [56] does not
require full access to the training dataset during the unlearning
process. By using cheap-to-store data statistics ∇2F̂ (D;w∗)
as shown in Eq.(16), they enable efficient unlearning without
the need for the entire training data reducing computational
and storage requirements, in contrast to Eq.(14) and Eq.(15).

Ĥ =
1

n−m

n∇2F̂ (D;w∗)−
∑

z′∈Df

∇2f(z′;w∗)

 ,

w− = w∗ +
1

n−m
(Ĥ)−1

∑
z′∈Df

∇f(z′;w∗).

(16)

They also emphasize the importance of test loss and add noise
after adjusting model parameters to ensure model performance.
This ensures privacy protection without compromising the
accuracy and performance of the model.

Suriyakumar et al. [57] propose a more computationally ef-
ficient algorithm for online data removal from machine learn-
ing models trained with empirical risk minimization (ERM).
This improvement is achieved by using the infinitesimal jack-
knife, a technique that approximates the influence of excluding
a data point from the training dataset on the model parameters.
This avoids the need to compute and invert a different Hessian
matrix for each removal request, which was required by prior
methods [48], [56]. Their approach enables efficient processing
of online removal requests while maintaining similar theoret-
ical guarantees on model accuracy and privacy. Moreover, by
integrating the infinitesimal jackknife with Newton methods,
their algorithm can accommodate ERM-trained models with
non-smooth regularizers, broadening applicability.

Mehta et al. [58] improve the efficiency of Hessian matrix
inversion in deep learning models. They introduce a selection
scheme, L-CODEC, which identifies a subset of parameters to
update, removing the need to invert a large matrix. This avoids
updating all parameters, focusing only on influential ones.
Building on this, they propose L-FOCI to construct a minimal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

set of influential parameters using L-CODEC incrementally.
Once the subset of parameters to update is identified, they
apply a blockwise Newton update to the subset. By focusing
computations only on influential parameters, their approach
makes approximate unlearning feasible for previously infeasi-
ble large deep neural networks.

Unlike the approach by Guo et al. [48], which only adjusts
the linear decision-making layer of a model, PUMA [59]
modifies all trainable parameters, offering a more thorough
solution to data removal. The main purpose of PUMA is to
maintain the model’s performance after data removal, rather
than just monitoring whether the modified model can produce
similar predictions to a model trained on the remaining data,
as Guo et al.’s method does. To achieve this, PUMA uses the
influence function to measure the influence of each data point
on the model’s performance and then adjusts the weight of
the remaining data to compensate for the removal of specific
data points. This approach allows for efficient data removal
without significant performance degradation.

Tanno et al. [60] propose a Bayesian continual learning
approach to identify and erase detrimental data points in the
training dataset. They use influence functions to measure the
influence of each data point on the model’s performance, al-
lowing them to identify the most detrimental training examples
that have caused observed failure cases. Once these detrimental
data points are identified, the model is updated to erase the
influence of these points. This is achieved by approximating a
“counterfactual” posterior distribution, where the harmful data
points are assumed to be absent. The authors propose three
methods for updating the model weights, one of which is a
variant of the Newton update proposed by Guo et al. [48]. This
approach effectively removes the influence of the detrimental
data points from the model, repairing the model without full
retraining.

Warnecke et al. [62] point out that unlearning should not
be limited to removing entire data points. Instead, it should
enable corrections at various granularities within the training
data. They propose a method that uses influence functions to
remove specific features and labels from a trained model. By
reformulating influence estimation as a form of removing, the
authors derive an approach that maps changes in training data
retrospectively to closed-form updates of model parameters.
These updates can be computed efficiently even when large
portions of the training data are affected, effectively correcting
the problematic features and labels within the model.

Comparisons and Discussions. The influence function
was first introduced for efficient data removal by Guo et al.
[48], providing a one-step Newton update to remove data
points based on their influence on model parameters. However,
this pioneering work relied on convexity assumptions and
suffered from high computational costs due to the need to
invert the Hessian matrix. Subsequent research addressed these
limitations by developing more efficient approximations of
influence functions. The summary and comparison of approx-
imate unlearning based on influence functions are in Table II.

A key challenge in this field is the computational cost
associated with inverting the Hessian matrix, a step necessary
for estimating the influence of data points and updating model

parameters. Several strategies have been proposed to address
this issue. Sekhari et al. [56] reduced storage and computation
costs by avoiding the need for the full training data. Suriyaku-
mar et al. [57] proposed using the infinitesimal jackknife
technique to efficiently approximate influence in an online
setting, also extending unlearning to non-smooth regularizers.
Mehta et al. [58] introduced a conditional independence-based
selection of influential parameters to avoid inverting large
matrices, enabling unlearning in deep neural networks. These
techniques demonstrate the potential for efficient approximate
unlearning in practical scenarios.

Moreover, considerations such as test loss [56], thorough-
ness of removal [59], and finer-grained corrections [62] indi-
cate that revised algorithms are becoming increasingly suitable
for diverse real-world applications. The extension of these
methods to non-convex models [57], [62] and deep neural
networks [58], [62] further highlights their potential.

However, significant challenges remain to be addressed. The
accuracy and efficiency of influence estimation and parameter
updating require analysis and could potentially be improved.
Furthermore, the optimal selection of parameters for updates
and the best techniques for influence estimation remain open
questions. Connections to differential privacy and information
theory may yield valuable insights into inherent limits.

In summary, approximate unlearning based on influence
functions shows promise for efficient data removal. This direc-
tion enables important progress on algorithmic data removal
and its impacts. With continued research, it is expected to play
a key role in addressing privacy regulation challenges in the
era of big data.

C. Approximate Unlearning based on Re-optimization after
Removing the Data

Approximate unlearning based on re-optimization re-
optimizes the model after removing data to minimize the
influence of the removed data points while maintaining model
performance. The key steps are:
(1) Train a model M(x;w) with parameters w on the full

dataset D. The original loss function is F , and the
minimum value is obtained at w∗.

(2) Define a loss function F (Dr;w) that maintain accuracy
on remaining data Dr while removing information about
data to be forgotten Df .

(3) Re-optimize the model from w∗ by finding updated
parameters w− that minimize F (Dr;w). The updated
model M(x;w−) retains performance on Dr while sta-
tistically behaving as if trained without Df .

Research in this area has proposed different techniques to
implement the key steps above. They have adopted different
techniques for selective removing/forgetting based on applica-
tion goals.

Golatkar et al. [46] propose an optimal quadratic scrubbing
algorithm to achieve selective forgetting in deep networks.
Selective forgetting is defined as a process that modifies the
network weights using a scrubbing function S(w) to make
the distribution indistinguishable from weights of a network
never trained on the forgotten data. Selective forgetting is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE II: Approximate Unlearning based on Influence Function

Paper Goal Design Ideas Strengths Weaknesses

[48] Certified removal
• One-step Newton update/

influence function
• Difference privacy

• Efficient training data removal
• Strong theoretical certified

removal guarantee

• Relies on convexity
• High computational cost for

inverting the Hessian matrix

[56]

Efficient unlearn-
ing with gener-
alization guaran-
tees

• Use influence functions to
identify important data points

• Store cheap data statistics

• Considers test loss instead of
just training loss

• Reduce computational and
storage costs

• Give the deletion capacity

• Relies on convexity
• Relies on storage of data

statistics
• Does not handle finite / discrete

hypothesis classes

[57]

Efficient
unlearning
for ERM models

• Infinitesimal jackknife
• Newton update

• Computationally efficient online
unlearning

• Accommodating non-smooth
regularizers

• Specific to ERM models
• Inefficient for batch removal

[58]
Efficient unlearn-
ing for DNN

• Conditional independence-based
parameter selection

• Avoids full Hessian inverse
• Improves unlearning efficiency

in DNN

• Relies on weighted sampling
based on Lipschitz constants of
filters/layers

• Dependence on newly
developed optimization tools

[59]

Maintain perfor-
mance during un-
learning

• Performance unchanged model
augmentation

• Maintain performance after
removal

• Computationally efficient

• Limited evaluation on simple
datasets

• Sensitive to hyperparameters

[60]
Repair model by
data removal

• Identify detrimental data via
influence function

• Remove via posterior
approximation

• Model-agnostic framework
• Identify causes of failures

• Limited to detrimental data
removal

• Cause identification can be
computationally intensive

[62]
Unlearn features
and labels

• Use influence functions as
updates for features or labels

• Effective unlearning of
features/labels

• Efficient closed-form updates

• Efficacy drops as affected
features/labels increase

• No guarantee for non-convex
models

measured by the Kullback-Leibler (KL) divergence. If the
KL divergence between the network weight distribution after
selective forgetting and the network weight distribution that
has never seen the forgotten data is 0, the two distributions
are exactly the same, which indicates complete forgetting.

The authors assume that the quadratic loss function L(D;w)
can be decomposed into:

L(D;w) = L(Df ;w) + L(Dr;w), (17)

where L(Df ;w) is the loss of the data to be removed and
L(Dr;w) is the loss of remaining data.

The goal of optimization is to minimize Forgetting La-
grangian L:

L = ES(w)[L(Dr;w)] + λKL[P (S(w)|D)||P (S0(w)|Dr)],
(18)

where ES(w)[L(Dr;w)] is the expected loss on the remaining
data, λ is a hyperparameter that trades off residual information
about the data to be removed and accuracy on the remaining
data.

The robust scrubbing function St(w) that efficiently re-
moves information about specific training data is:

St(w) = w + e−BteAtd+ e−Bt(d− dr)− dr

+ (λσ2
h)

1/4B−1/4n,
(19)

where n ∼ N(0, I), A = ∇2L(D;w), B = ∇2L(Dr;w), d =
A−1∇wL(D;w) and dr = B−1∇wL(Dr;w). λ balances
information retention and accuracy. The hyperparameter σh

reflects the error in approximating the Stochastic Gradient
Descent (SGD).

Using Fisher Information Matrix (FIM) [63] to approximate
the Hessian matrix, St(w) simplifies to:

S(w) = w + (λσ2
h)

1/4F−1/4, (20)

where F is the FIM computed at w for Dr.
In their follow-up work [64], Golatkar et al. note that

weight changes may not affect deep network outputs due
to overparameterization. Consequently, attackers could still
extract removed data Df from the outputs. To address this
issue, they focus on final activations. These activations rep-
resent the model’s response to input data and more directly
reflect memory and removing processes. They use a Neural
Tangent Kernel (NTK) to correlate weights and activations,
and introduce an NTK-based scrubbing process to achieve
removing by minimizing the difference between the activation
of the network on the removing dataset and the target model.

Later, Golatkar et al. [65] consider mixed-privacy settings
where only some user data needs to be removed, while core
data are retained. The key insight is to separate the model
into two sets of weights: Non-linear core weights trained
conventionally on the core data, ensuring they only contain
knowledge from the core data that does not need to be
removed. Linear user weights are obtained by minimizing a
quadratic loss on all user data. To remove a subset of user
data, the optimal user weight update is directly computed
by minimizing the loss on the remaining user data. This
aligns with the theoretical optimal update for quadratic loss
functions and achieves efficient, accurate removal in mixed-
privacy settings without reducing core data accuracy.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE III: Approximate Unlearning based on Re-optimization

Paper Goal Design Ideas Strengths Weaknesses

[46]
Selective forget-
ting in deep net-
works

• Optimal quadratic scrubbing on
weights

• Add noise tailored to the loss
landscape

• Formal definition of selective
forgetting

• Provides upper bound on
remaining info

• Rely on the stability of SGD
• Computationally expensive,

limited scalability

[64]

Selective
forgetting from
input-output
observations

• Analysis based on final
activations

• NTK-based scrubbing

• Provides tighter black-box
bounds with limited queries

• Handles over-parameterized
models

• Relies on linearization
assumptions

• Computationally expensive

[65]

Selective
forgetting for
large deep
networks

• Mixed-privacy setting
• User weights obtained by

minimizing quadratic loss

• Maintaining accuracy on large
vision tasks

• Provides information bounds

• Relies on the strong convexity
assumptions

• Forgetting quality depends on
data subsets

[66]
Class-level selec-
tive forgetting in
lifelong learning

• Mnemonic codes
• New loss function with four

components

• Class-level removing
• No need for original data

• Customized for image data
• Computational cost of

embedding codes

Shibata et al. present Learning with Selective Forgetting
(LSF) [66] to achieve class-level selective forgetting in life-
long learning. They introduce a loss function F with four
components: classification loss FC to ensure the accuracy
of classification, mnemonic loss FM tying each class to
an embedded code, selective forgetting loss FSF to remove
classes marked for removal, and regularization loss FR to
prevent catastrophic forgetting.

F =

new task︷ ︸︸ ︷
FC + FM +

previous tasks︷ ︸︸ ︷
FSF + FR . (21)

The mnemonic codes allow selective forgetting of any class
by discarding its code without the original data. The model
can selectively forget certain classes by re-optimizing on new
loss as illustrated in Eq.(21) without the mnemonic codes of
classes to be forgotten.

Comparisons and Discussions. Recent research on se-
lective forgetting for deep neural networks has pursued re-
optimization strategies to update models and reduce the influ-
ence of data points to be removed. These works have shown
promising progress in approximate unlearning through re-
optimization techniques, while also revealing key challenges
and opportunities for improvement. The summary and com-
parison of approximate unlearning based on re-optimization
are in Table III.

Earlier work [46] introduced core techniques such as weight
scrubbing and adding noise, providing a theoretical framework
to bound residual information. However, as noted in their late
work [64], these weight-centric analyses failed to fully capture
the information remaining in activations, leading to cleaner
removal guarantees by analyzing outputs.

Subsequent work has aimed to improve computational effi-
ciency and accuracy. Approximations using the Fisher infor-
mation matrix [46] or NTK [64] help address scalability but
may still be expensive and rely on simplifying assumptions.
Work by [65] separates weights into fixed core and trainable
user components. By optimizing a quadratic loss, efficient
removing procedures for user weights could be derived. How-
ever, reliance on strong convexity and linear approximations
may limit generalizability. Concurrently, research [66] used

memory codes to enable class-level removing, but stability
and transferability over multiple tasks remain unproven.

Another key challenge is quantifying the closeness between
original and re-optimized models, which impacts unlearning
effectiveness. The more similar the re-optimized model is to
one trained without the data to be removed, the less extractable
information remains. However, accurately bounding this sim-
ilarity is difficult for complex deep networks. Developing
rigorous verification methods is an important open problem.

In addition, these approaches make simplifying assumptions
about training processes and loss landscapes that may not fully
capture the intricate behaviors of large non-convex models
optimized with SGD. Relaxing assumptions such as quadratic
losses could improve generalization.

Finally, inherent tradeoffs exist between privacy, accuracy,
and efficiency in approximate unlearning. Performance im-
pact should be minimized, but some degradation is typically
unavoidable. Tuning this balance optimally for different ap-
plications remains an open research problem. The isolation
of user weights [65] is an interesting architectural adaptation
that could enable broader applications for compartmentalizing
model knowledge. Extending this approach merits further
exploration.

Overall, approximate unlearning based on re-optimization
shows promising early progress on efficient data removal for
deep learning. This direction enables valuable advancement
in algorithmic data removal and its impacts. Advancing the-
oretical foundations, scaling to large models, and developing
robust algorithms tailored to complex training dynamics could
further accelerate progress in this critical area.

D. Approximate Unlearning based on Gradient Update

The model parameters need only small adjustments in ma-
chine unlearning because the variation of the dataset is often
small. Approximate unlearning based on gradient updates
makes small adjustments to model parameters to modify the
model after removing or adding data points incrementally.
This avoids the computational expense of full retraining.
Approximate unlearning based on gradient update generally
follows a two-step framework to update trained models after
minor data changes without full retraining:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE IV: Approximate Unlearning based on Gradient Update

Paper Goal Design Ideas Strengths Weaknesses

DeltaGrad
[45]

Efficiently retrain
models after mi-
nor data changes

• Cached training parameters and
gradients

• Burn-in iterations + L-BFGS
approximation

• Applicable to general models
with GD/SGD

• Support both addition and
removal

• Gradient storage cost
• Relies on strong convexity

assumptions

FedRecover
[67]

FL model recov-
ery after poison-
ing attacks

• Server estimates updates
• L-BFGS approximation

+corrections

• Estimate clients’ model updates
to reduce communication cost

• Scalable to numerous clients

• Storing historical information
• Convexity assumptions

Descent-to
-Delete

[68]

Unlearning
with efficiency
and privacy
guarantees

• Gradient descent perturbations
• Data partitioning

• Gaussian noise for indistin-
guishability

• Handles arbitrary updates
• Improved accuracy for high-

dimensional data

• Convexity assumptions
• Accuracy/efficiency tradeoff

BAERASER
[69]

Remove
backdoor

• Trigger pattern recovery
• Gradient ascent unlearning

• Removes backdoors without
retraining data

• Prevents catastrophic forgetting

• Recovered triggers not identical
• Applicable to backdoor only

(1) Initialize the model parameters using the previously
trained model.

(2) Perform a small number of gradient update steps on the
new data.

Within this framework, the methods make optimizations and
customizations to improve efficiency and accuracy.

DeltaGrad [45], a representative of this category, adapts
models efficiently to small training set changes by utilizing
cached gradient and parameter information during the original
training process. The algorithm includes two cases: burn-in
iteration and other iterations.

Before Update: The model parameters w0,w1, ...,wt

and corresponding gradients ∇F (D;w0),∇F (D;w1), ...,
∇F (D;wt) of the training process on the full training dataset
are cached.

Burn-in Iteration: The algorithm computes gradients ex-
actly in initial burn-in iterations for correction:

∇F
(
D;wI

t

)
= ∇F (D;wt) +Ht ·

(
wI

t −wt

)
,

wI
t+1 = wI

t −
ηt

n− r

[∑
z/∈U

∇f
(
z;wI

t

)] (22)

wI
t denotes the updated model parameter, and Ht =∫ 1

0
H

(
wt + x

(
wI

t −wt

))
dx is the integrated Hessian ma-

trix at iteration step t.
Other Iteration: The algorithm approximates Ht using the

L-BFGS algorithm [70] and uses this approximation Bt to
compute updated gradients:

∇F
(
D;wI

t

)
= ∇F (D;wt) +Bt ·

(
wI

t −wt

)
,

wI
t+1 = wI

t −
ηt

n− r

[
n∇F

(
D;wI

t

)
−

∑
z′∈U

∇f
(
z′;wI

t

)]
(23)

FedRecover [67] takes a similar approach to recover accu-
rate global models from poisoned models in federated learning
while minimizing computation and communication costs on
the client side. The key idea is that the server uses the
historical information collected during the training of the
poisoned global model to estimate the client’s model update
during recovery. FedRecover utilizes an algorithm based on
L-BFGS [70] to approximate the integral Hessian matrix and

recover an accurate global model using strategies such as
warm-up, periodic correction, and final tuning.

Descent-to-Delete [68] introduces a basic gradient descent
algorithm that begins with the previous model and executes
a limited number of gradient descent updates. This process
ensures the model parameters remain in close Euclidean
proximity to the optimal parameters. Subsequently, Gaussian
noise is applied to the model parameters to ensure indistin-
guishability for any entity close to the optimal model. For
high-dimensional data, it partitions the dataset, optimizes each
part independently, and releases a perturbed average similar to
FederatedAveraging [71].

BAERASER [69] applies gradient ascent-based unlearning
to remove backdoors [72] in models. The process begins by
identifying embedded trigger patterns. Once these triggers
are discovered, BAERASER uses them to discard the con-
taminated memories through a gradient ascent-based machine
unlearning method. The loss of trigger pattern unlearning is
FU = −FCE(M(xb;wj), yb), where FCE is the prediction
loss for a trigger pattern xb with respect to the target label
yb, and wj is the parameters of the target model at jth
unlearning iteration. The loss of trigger pattern unlearning
is designed to maximize the cross-entropy loss between the
model’s prediction for a trigger pattern and the target label,
thereby reducing the influence of the trigger pattern. To prevent
the model’s performance from dropping due to the unlearning
process, BAERASER uses the validation data to maintain
the memory of the target model over the normal data and
a dynamic penalty mechanism to punish the over-unlearning
of the memorizes unrelated to trigger patterns.

Comparisons and Discussions. Approximate unlearning
based on gradient update can use cached information such
as gradients and parameters to adapt models to small data
changes rapidly. These methods offer more efficient alterna-
tives compared to naive retraining but also have some limita-
tions. Table IV summarizes and compares various approximate
unlearning based on gradient update.

A key advantage is rapidly adapting models to small data
changes with minimal computational expense. However, the
techniques rely on assumptions such as strong convexity that
may not hold for complex models [45], [68]. Techniques such
as L-BFGS that approximate Hessians to speed up [45], [67]

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

may also break down for very high-dimensional models.
Another limitation is approximation errors can accumulate

over multiple update rounds [68], resulting in less accurate
recovered models. Strategies such as warm-up and periodic
correction [45], [67] address this but introduce extra costs.
The techniques also struggle with large data changes, as the
gradient adjustments are insufficient to adequately adapt the
model.

In summary, these gradient-based unlearning methods offer
promising efficiency gains for data removal, but practical de-
ployments must carefully validate assumptions and theoretical
guarantees. Improvements to enhance robustness to approx-
imation errors and large data changes could expand their
applicability. Further research is needed to handle complex
models, automated tuning, and formal privacy guarantees for
widespread use in real-world machine learning systems.

E. Approximate Graph Unlearning

Graph-structured data brings unique challenges to machine
unlearning due to the inherent dependencies between con-
nected data points. Traditional machine unlearning methods
designed for tabular or image data often fail to account for
the complex interactions present in graph data. Recent studies
have made important advancements in developing specialized
techniques for approximate graph unlearning.

In this section, we introduce several papers that have made
important contributions to the field of graph-based models.
These papers propose methods to address the challenges of
graph unlearning from different perspectives, which are crucial
for a deep understanding of the current state of research in this
field.

First, data interdependence is a key challenge in graph
unlearning. Given a node in a graph as a removing target, it
is necessary to remove its influence and its potential influence
on multi-hop neighbors. To address this issue, Wu et al.
[73] proposed a Graph Influence Function (GIF) to consider
such structural influence of node/edge/feature on its neighbors.
GIF estimates the parameter changes in response to ϵ-mass
perturbations in the removed data by introducing an additional
loss term related to the affected neighbors. GIF provides a
way to explain the effects of unlearning node features. Cheng
et al. [74] introduced two properties called Deleted Edge
Consistency and Neighborhood Influence that aim to limit
the impact of edge deletion to only the local neighborhood.
Deleted Edge Consistency ensures that the deletion of an
edge does not affect the representation of other edges in the
same neighborhood, while Neighborhood Influence ensures
that the deletion of an edge only affects its direct neighbors and
not the entire graph. Their proposed method GNNDELETE
incorporates these properties through a novel deletion operator
and achieves strong performance on node and edge deletion
tasks. Chien [75] aims to address three different types of data
removal requests in graph unlearning: node feature unlearning,
edge unlearning, and node unlearning. They derive theoreti-
cal guarantees for node/edge/feature deletion specifically for
Simple Graph Convolutions and their generalized PageRank
generalizations.

Second, most graph unlearning methods are designed for the
transductive graph setting, where the graph is static and test
graph information is available during training. However, many
real-world graphs are dynamic, with new nodes and edges
being continuously added. To address this, Wang et al. [76]
proposed the GUIded InDuctivE Graph Unlearning framework
(GUIDE) to realize graph unlearning for dynamic graphs.
GUIDE includes fair and balanced guided graph partitioning,
efficient subgraph repair, and similarity-based aggregation.
Balanced partitioning ensures that the retraining time of each
shard is similar, and subgraph repair and similarity-based
aggregation reduce the side effects of graph partitioning,
thereby improving model utility.

Third, it is challenging to achieve graph unlearning while
maintaining model performance when the number of training
data is limited. To address this, Pan et al. [77] proposed
a nonlinear approximate graph unlearning method based on
Graph Scattering Transform (GST). GST is stable under small
perturbations in graph features and topologies, making it a
robust method for graph data processing. Furthermore, GSTs
are non-trainable, and all wavelet coefficients in GSTs are
constructed analytically, making GST computationally more
efficient and requiring less training data than GNNs.

Finally, in the realm of federated knowledge graph (KG)
embedding learning, a significant concern is the effective
handling of data heterogeneity and knowledge retention chal-
lenges. FedLU [78] uses mutual knowledge distillation to
transfer local knowledge to the global model and absorb
global knowledge into the local models. To achieve feder-
ated KG embedding unlearning, FedLU is inspired by the
forgetting theories in cognitive neuroscience and adopts a
two-step forgetting process of interference and decay. In
the first retroactive interference step, FedLU performs hard
and soft confusions, as the interference theory states that
forgetting occurs when memories compete and interfere with
other memories [79]. Then, in the passive decay step, FedLU
suppresses the activation of forgotten knowledge, as the decay
theory posits that memory traces gradually disappear and are
eventually lost if not retrieved and rehearsed [80].

Comparisons and Discussions. Recent research on graph
unlearning has extended machine unlearning techniques to
accommodate the additional complexities of graph-structured
data and node dependencies. However, there remain open
challenges and opportunities for future work. The summary
and comparison of approximate graph unlearning methods are
in Table V.

A key insight is that graph unlearning requires specialized
techniques that consider graph data’s unique dependencies
and constraints. Simple adaptations of existing unlearning
methods are insufficient. For example, research [73] proposes
graph-oriented influence functions by incorporating the loss
of influenced neighbors, which outperforms conventional in-
fluence functions in GNN. An open question is how to develop
a unified framework that can automatically determine the
optimal graph unlearning strategy based on data properties.

Another limitation of current graph unlearning methods
is scalability to large and dynamic graphs [76], [78]. Most
techniques are only evaluated on small networks and may

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

TABLE V: Approximate Graph Unlearning Methods

Paper Goal Design Ideas Strengths Weaknesses

[73]

General unlearn-
ing strategy for
GNNs

Graph influence functions consid-
ering neighbors’ influence

• Applicable to different models
• Supports various removal tasks
• Closed-form solution

• Focus on the classification
• Memory-intensive

[74]
Efficient unlearn-
ing for GNNs

• Deleted Edge Consistency
• Neighborhood Influence

• Flexible removal operator
applicable to any GNN

• Supports various removal tasks

• Limited to transductive learning

[75]
Graph-structured
data unlearning

• Update model parameters based
on gradient difference

• Analyze for node/edge/feature
unlearning

• Strong theoretical guarantees

• Analysis limited to linear
models

• Loose worst-case bounds

[76]
Inductive graph
unlearning

• Guided graph partitioning
• Subgraph repairing
• Similarity-based aggregation

• Repair subgraphs independently
• Enables unlearning on evolving

graphs

• Increased memory cost
• Generalizing partition fairness

needs exploration

[77]

Unlearning for
GNNs with
limited training
data

Use GSTs for graph embeddings
• Nonlinear approximate graph

unlearning
• Theoretical guarantees

• Limited to classification
• Bounds are loose

[78]

Unlearning
for knowledge
graphs in FL

• Mutual knowledge distillation
• Retroactive interference &

passive decay for unlearning

• Unlearning for heterogeneous
federated KGs

• Mutual knowledge distillation
reduces bias in local and global
models

• High computational cost
• Applicability to other graph

data needs exploration

not extend well to graphs with millions of nodes and edges
that evolve over time. Developing efficient and incremental
unlearning algorithms is an important direction for enabling
real-world deployment.

An interesting area for further exploration is how to apply
graph unlearning in advanced graph-based applications such
as recommender systems [77], [78], node classification, and
link prediction. Studying the influence of unlearning parts
of a knowledge graph on downstream predictive tasks could
provide insight into how much utility is retained.

There are also open questions around further characteriz-
ing the inherent tradeoffs between unlearning performance,
privacy risks, and model utility [73], [74]. Quantifying these
tradeoffs could help select optimal operating points based on
application requirements.

Overall, the field of graph unlearning still has rich op-
portunities for impactful contributions through innovations in
efficiency, scalability, flexibility, and rigorous characterization.
By addressing the unique needs of graph data, future advances
can expand the scope and applications of machine unlearning.

F. Approximate Unlearning based on Novel Techniques

Researchers have also developed novel approximate un-
learning techniques that exploit unique model architectures or
data characteristics.

Wang et al. [81] propose a method for selectively remov-
ing categories from trained Convolutional Neural Network
(CNN) classification models in FL. This approach is based
on the observation that different CNN channels contribute
differently to image categories. They use Term Frequency
Inverse Document Frequency (TF-IDF) to quantify the class
discrimination of channels and prune highly discriminative
channels of target categories to facilitate unlearning. When
the federated unlearning process begins, the federated server
notifies clients to calculate and upload local representations.

The server then prunes discriminative channels and fine-tunes
the model to regain accuracy, avoiding full retraining.

Izzo et al. [82] proposed the Projective Residual Update
(PRU) for data removal from linear regression models. PRU
computes the projection of the exact parameter update vector
onto a specific low-dimensional subspace, with its computa-
tional cost scaling linearly with the data dimension, making it
independent of the number of training data points. The PRU
algorithm begins by creating synthetic data points and comput-
ing Leave-k-out (LKO) predictions. Next, the pseudoinverse
of a matrix, composed of the outer product of the feature
vectors of the removed data points, is computed. The model’s
loss at these synthetic points is then minimized by taking a
gradient step, which also updates the model parameters. This
characteristic makes PRU a scalable solution for handling large
datasets, as the volume of training data does not compromise
its efficiency.

ERM-KTP [40] is an interpretable knowledge-level machine
unlearning method that removes target classes’ influence for
image classifiers. To achieve this, ERM-KTP employs an
Entanglement-Reduced Mask (ERM) during training to sep-
arate and isolate class-specific knowledge. When unlearning
is needed, Knowledge Transfer and Prohibition (KTP) selec-
tively transfers non-target knowledge to a new model while
prohibiting target knowledge transfer. The interpretable design
enhances trust and transparency in the unlearning process.

Boundary Unlearning [83] aims to efficiently erase an
entire class from a trained deep neural network by shifting
the decision boundary instead of modifying parameters. It
transfers attention from the high-dimensional parameter space
to the decision space of the model, allowing rapid removal of
the target class. Two methods are introduced: boundary shrink
reassigns each removing data point to its nearest incorrect class
and fine-tunes the model accordingly; boundary expanding
temporarily maps all removing data to a new shadow class,
fine-tunes the expanded model, and then prunes away the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

shadow class.
Quark [84] aims to unlearn undesirable behaviors such

as toxicity and repetition from large pre-trained language
models using reinforcement learning techniques. It works by
scoring model samples with a reward function and sorting
into quantiles, appending special reward tokens denoting the
quantile, retraining the model on each quantile conditioned on
its token, with a KL penalty, and sampling at generation time
with the best reward token to steer towards higher rewards.

V. CRITICAL ISSUES OF MACHINE UNLEARNING

A. Performance and Privacy Issues of Unlearning

Machine unlearning is an emerging technique in machine
learning that provides the ability to selectively remove pre-
viously learned data from trained models [16]. As a supple-
mentary tool to traditional ML models, machine unlearning
enables efficient modifying, updating, and refining models.
This subtractive capability facilitates use cases such as re-
moving personal data for privacy, resisting poisoned data, and
responding to new regulations.

However, machine unlearning also brings technical chal-
lenges and tradeoffs in ML system design. One challenge is the
tradeoff of the efficiency of machine unlearning with model
performance. Architectures such as SISA improve unlearning
timeliness through ensemble models but can isolate data
and hurt overall performance [85]. Well-designed unlearning
algorithms that maintain the original ML model structure may
still decrease model accuracy and even leads to catastrophic
forgetting [43], [86]. The unlearning methods must be tailored
to minimize negative impacts on the model. Another potential
issue is that removing one data point may expose information
about other data points, compromising privacy [42], [57]. It
is necessary to combine machine unlearning with encryption
techniques to mitigate such risks.

To tackle these challenges, advances in model architectures,
dataset engineering, and infrastructure to support machine
unlearning are required. For example, new model architectures
could isolate data to limit negative impacts during unlearning.
Synthetic dataset generation can create training data with built-
in controls for later unlearning. With solutions across model,
data, and system levels, machine unlearning can become a
fundamental technique to construct more trustworthy, secure,
and privacy-preserving ML systems.

B. Machine Unlearning and the Right to Be Forgotten

The right to be forgotten, allowing individuals to request
personal data removal, is important for privacy protection.
Although machine unlearning became popular partly because
of its enabling the right to be forgotten, the relationship
between machine unlearning and this right is nuanced. While
machine unlearning provides a useful technical tool, it is
neither necessary nor sufficient to guarantee the right to be
forgotten.

First, machine unlearning is not strictly necessary for exer-
cising the right to be forgotten, as other techniques, such as
retraining models from scratch or on new datasets, can also

fulfill data removing requirements. Machine unlearning pro-
vides a more computationally efficient method for forgetting,
but other feasible approaches exist.

Second, machine unlearning alone is insufficient for com-
prehensively guaranteeing the right to be forgotten. Beyond
just removing model parameters through machine unlearning
algorithms, additional technical and legal steps are required
to fully assert this right in practice, such as verifiable proof
of unlearning, proof of data ownership, auditing for potential
privacy leaks, and employing privacy-enhancing technologies.

Third, adapting machine unlearning for the right to be
forgotten will also bring new threats. For example, malicious
data owners could continuously initiate unlearning requests
to hurt the model availability of model owners. Defending
against such attacks remains an open challenge. Additionally,
in data sharing, multiple parties share their data to train
a common machine learning model. Malicious data owners
could deliberately share low-quality data, unlearn it after
obtaining the model, then retrain on their high-quality data
to gain advantage [87].

Stronger legal and technical tools integration can better
balance users’ rights and company interests [88]. Aligning
regulations and technical standards can enable compliant,
minimized-cost unlearning algorithms [57]. Overall, machine
unlearning provides useful techniques but must be imple-
mented alongside other safeguards to encourage companies
to act quickly to assert users’ data protection rights.

C. Proof of Unlearning
Proof of unlearning is an important concept that provides

auditable evidence that an ML model has properly unlearned
certain training data points. While related to proof of learn-
ing [89], [90], proof of unlearning is more challenging as
the adversary is the model owner themselves. Since they
have access to the original training data and model, weaker
forms of proof of learning can be circumvented [17]. Stronger
cryptographic proofs are needed to prevent manipulation of
the audit process.

Recent work [17] demonstrates that unlearning is best
defined at the algorithmic level rather than by reasoning
about model parameters. They show that model parameters
can be identical even when trained with or without certain
data points [91]. This means that inspecting parameters alone
cannot prove whether unlearning occurred [17]. Other related
work has proposed using techniques such as backdoors to
detect compliance of a model owner with a data removal
request [92], [93]. However, such techniques are only proba-
bilistic and limited by data points.

To enable rigorous auditing, continued research on efficient
cryptographic proofs for unlearning is important. Promising
directions include succinct zero-knowledge proofs and trusted
execution environments (TEEs) [94]. These can prove unlearn-
ing algorithms were properly executed without relying on indi-
rect model observations. Key challenges include ensuring the
transparency and reliability of proofs, minimizing verification
time, and cost on the underlying machine learning pipelines.

By combining cryptography, trusted computing, and ad-
vances in machine learning, proof of unlearning can provide

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

robust auditing of unlearning claims. This emerging technique
will be essential for accountability and compliance as the right
to be forgotten is increasingly recognized. Ongoing research
to develop practical proofs will support reliable validation of
unlearning in complex, real-world systems.

D. Unlearning and Explainable AI

There is an intricate relationship between explainable arti-
ficial intelligence and machine unlearning. On the one hand,
improving model explainability can facilitate the development
of more effective unlearning algorithms. Techniques from
explainable AI, such as generating feature importance scores
and instance-based explanations [26], can help identify parts
of the model most influenced by specific training data. Such
insights can guide the design of unlearning methods that
precisely remove the targeted information.

On the other hand, machine unlearning itself may benefit
explainability. For example, by analyzing how explanations of
model predictions change before and after unlearning certain
data, one may gain insights into how the removed informa-
tion initially influenced the model. Comparing explanations
derived from the original model versus the updated model after
unlearning can elucidate what memorization and unlearning
entail in complex machine learning systems [95].

Overall, explainability and unlearning are mutually benefi-
cial, and integrating the two leads to more transparent, trust-
worthy, and controllable AI systems. But there remain open
challenges around developing rigorous quantitative evaluation
protocols to assess the interplay between explainability and
unlearning.

VI. POTENTIAL RESEARCH DIRECTIONS

Machine unlearning is an emerging field with many open
problems and opportunities. In this section, we discuss sev-
eral promising directions for advancing machine unlearn-
ing research. By tackling existing methods’ challenges and
limitations, future work can significantly extend the scope,
applicability, reliability, and flexibility of machine unlearning.

A. Unlearning for Diverse Data Structures

Existing studies have focused on exploring unlearning al-
gorithms on set-structured and graph-structured training data.
However, many other complex data structures such as text,
speech, and multimedia are also increasingly used to train
machine learning models, especially in fields such as natural
language processing [2] and audio/video analysis [96]. Extend-
ing unlearning techniques to these diverse and complex data
is an important next step but poses challenges. This requires
handling the unique characteristics of different data types,
such as timing and sequences in speech and language, spatial
relationships in images, or hierarchical structures in knowledge
graphs. Further, developing multimodal unlearning [97] that
works across data combinations is also crucial for real-world
usage. Tackling these data structure challenges can greatly
expand the applicability of machine unlearning.

B. Unlearning for Non-convex Models
Non-convex neural network models such as CNNs and

Recurrent Neural Networks (RNNs) have become prevalent in
various deep learning applications. However, existing approx-
imate unlearning research has mostly focused on convex mod-
els such as logistic regression. Extending efficient and effective
unlearning algorithms to non-convex neural networks remains
an important open challenge [48]. The key difficulties include
dealing with non-convex optimization problems such as local
optima and saddle points and providing theoretical guarantees
on the unlearning process similar to those for convex cases. It
also needs to deal with special structures in neural networks,
such as activation functions and normalization layers [98]. To
address these challenges, future research should aim to de-
velop novel unlearning algorithms and analyses tailored to the
characteristics of common neural network structures. This can
significantly expand the applicability of machine unlearning in
computer vision [99], natural language processing [2], speech
recognition [100], and other areas that heavily rely on deep
neural networks.

C. User-Specified Granularity of Unlearning
Most existing machine unlearning methods focus on

instance-level removing, i.e., removing the influence of one
training data point. However, users may need finer-grained
control over what to remove from the model. For example,
users may request to remove only certain sensitive regions
of an image while retaining the rest or specific words in a
text document that are no longer appropriate. An interesting
research direction is to explore interactive and interpretable un-
learning algorithms that allow users to specify the granularity
of unlearning at a finer-grained level. Such algorithms may
need to identify the semantic components of examples and
their contributions to model predictions. It will greatly enhance
the ability of unlearning techniques to meet user requirements.

D. Privacy Assurance for Unlearning
Most existing approximate unlearning algorithms rely on

differential privacy to provide formal unlearning guarantees
[48], [101]. However, differential privacy often uses a rel-
atively relaxed privacy budget to balance privacy and util-
ity [102]. The privacy guarantees it provides may be insuffi-
cient for scenarios with extremely high privacy demands [103],
[104]. Therefore, an important research direction is to ex-
plore stronger privacy notions beyond differential privacy that
can limit information disclosure more rigorously while not
excessively sacrificing model utility. For example, exploring
information theoretic approaches [105] that directly bound the
amount of information about the removed data retained in the
model after unlearning. This requires overcoming the difficulty
of extracting information from models. This research direction
can potentially promote the explainability and verifiability of
machine learning algorithms [106].

E. Quantitative Evaluation Metrics
To compare different unlearning methods, it is crucial to

develop quantitative metrics that can measure the degree

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

of influence removal for the removed data and the degree
of influence retention for the remaining data [94], [107].
However, constructing such fine-grained evaluation metrics
requires the ability to systematically analyze the memorization
process of machine learning models on different data [107].
Advanced tools from information theory [108] and explainabil-
ity research [109] are useful in this direction. Well-designed
metrics will greatly promote the theoretical analysis of ma-
chine unlearning algorithms and guide the development and
adoption of reliable unlearning techniques in practice.

VII. CONCLUSION

In this paper, we have presented a comprehensive overview
of machine unlearning, an emerging technique that enables
selective removing training data in machine learning models.
We reviewed exact unlearning based on SISA, as well as ap-
proximate unlearning utilizing ideas from influence functions,
re-optimization, gradient update, and other approaches. Our
analysis reveals current limitations in computational complex-
ity, providing strict privacy guarantees and limiting model
utility. We suggest promising directions such as extending
unlearning to diverse models and data structures, developing
efficient and verifiable algorithms, establishing rigorous eval-
uation methods, and exploring connections with related fields.
By addressing these challenges from different aspects, such as
algorithms, systems, and regulations, machine unlearning can
become an integral capability for trustworthy and adaptive AI.

REFERENCES

[1] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image
recognition,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 10 076–10 085.

[2] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” Science, vol. 349, no. 6245, pp. 261–266, 2015.

[3] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: a survey,” ACM Computing Surveys, vol. 55,
no. 5, pp. 1–37, 2022.

[4] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[5] S. Fu, F. He, and D. Tao, “Knowledge removal in sampling-based
bayesian inference,” in International Conference on Learning Repre-
sentations, 2021.

[6] A. K. Tarun, V. S. Chundawat, M. Mandal, and M. Kankanhalli,
“Fast yet effective machine unlearning,” IEEE Transactions on Neural
Networks and Learning Systems, 2023.

[7] M. Jegorova, C. Kaul, C. Mayor, A. Q. O’Neil, A. Weir, R. Murray-
Smith, and S. A. Tsaftaris, “Survey: Leakage and privacy at inference
time,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2022.

[8] H. Xu, T. Zhu*, L. Zhang, W. Zhou, and P. S. Yu, “Machine unlearning:
A survey,” ACM Computing Surveys, 2023.

[9] P. Voigt and A. Von dem Bussche, The EU General Data Protection
Regulation (GDPR). A Practical Guide. Springer International Pub-
lishing, 2017.

[10] S. o. C. D. o. J. Office of the Attorney General, “California consumer
privacy act (ccpa),” https://oag.ca.gov/privacy/ccpa, 2023.

[11] G. Wang, C. X. Dang, and Z. Zhou, “Measure contribution of partici-
pants in federated learning,” in 2019 IEEE international conference on
big data (Big Data). IEEE, 2019, pp. 2597–2604.

[12] H. Chang and R. Shokri, “On the privacy risks of algorithmic fair-
ness,” in 2021 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2021, pp. 292–303.

[13] B. Biggio, B. Nelson, P. Laskov et al., “Poisoning attacks against
support vector machines,” in Proceedings of the 29th International
Conference on Machine Learning, ICML 2012. ArXiv e-prints, 2012,
pp. 1807–1814.

[14] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for data
poisoning attacks,” Advances in neural information processing systems,
vol. 30, 2017.

[15] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys (CSUR),
vol. 46, no. 4, pp. 1–37, 2014.

[16] Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in 2015 IEEE symposium on security and privacy. IEEE,
2015, pp. 463–480.

[17] A. Thudi, H. Jia, I. Shumailov, and N. Papernot, “On the necessity
of auditable algorithmic definitions for machine unlearning,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 4007–
4022.

[18] H. Yan, X. Li, Z. Guo, H. Li, F. Li, and X. Lin, “ARCANE: An Efficient
Architecture for Exact Machine Unlearning,” in IJCAI International
Joint Conference on Artificial Intelligence, 2022, pp. 4006–4013.

[19] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[21] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
press, 2012.

[22] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,” Machine
learning, vol. 51, pp. 181–207, 2003.

[23] L. Rokach, “Ensemble-based classifiers,” Artificial intelligence review,
vol. 33, pp. 1–39, 2010.

[24] F. Doshi-Velez and B. Kim, “Towards a rigorous science of inter-
pretable machine learning,” arXiv preprint arXiv:1702.08608, 2017.

[25] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcı́a, S. Gil-López, D. Molina, R. Benjamins et al.,
“Explainable artificial intelligence (xai): Concepts, taxonomies, op-
portunities and challenges toward responsible ai,” Information fusion,
vol. 58, pp. 82–115, 2020.

[26] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in International conference on machine learning.
PMLR, 2017, pp. 1885–1894.

[27] F. R. Hampel, “The influence curve and its role in robust estimation,”
Journal of the american statistical association, vol. 69, no. 346, pp.
383–393, 1974.

[28] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “Poison forensics:
Traceback of data poisoning attacks in neural networks,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 3575–
3592.

[29] B. Hui, Y. Yang, H. Yuan, P. Burlina, N. Z. Gong, and Y. Cao, “Practical
blind membership inference attack via differential comparisons,” in
Network and Distributed System Security Symposium (NDSS), 2021.

[30] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang,
“Membership inference attacks on machine learning: A survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–37, 2022.

[31] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[32] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang,
“When machine unlearning jeopardizes privacy,” in Proceedings of
the 2021 ACM SIGSAC conference on computer and communications
security, 2021, pp. 896–911.

[33] S. Garg, S. Goldwasser, and P. N. Vasudevan, “Formalizing data
deletion in the context of the right to be forgotten,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2020, pp. 373–402.

[34] T. Bertram, E. Bursztein, S. Caro, H. Chao, R. C. Feman, P. Fleischer,
A. Gustafsson, J. Hemerly, C. Hibbert, L. Invernizzi, L. K. Donnelly,
J. Ketover, J. Laefer, P. Nicholas, Y. Niu, H. Obhi, D. Price, A. Strait,
K. Thomas, and A. Verney, “Five years of the right to be forgotten,”
in Proceedings of the ACM Conference on Computer and Communi-
cations Security, 2019, pp. 959–972.

[35] V. S. Chundawat, A. K. Tarun, M. Mandal, and M. Kankanhalli, “Zero-
shot machine unlearning,” IEEE Transactions on Information Forensics
and Security, 2023.

[36] Y. Cao, A. F. Yu, A. Aday, E. Stahl, J. Merwine, and J. Yang, “Efficient
repair of polluted machine learning systems via causal unlearning,”
in Proceedings of the 2018 on Asia conference on computer and
communications security, 2018, pp. 735–747.

[37] B. Mirzasoleiman, A. Karbasi, and A. Krause, “Deletion-robust sub-
modular maximization: Data summarization with ”the right to be

https://oag.ca.gov/privacy/ccpa
http://www.deeplearningbook.org

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

forgotten”,” in Proceddings of the 34th International Conference on
Machine Learning, ICML 2017, vol. 5, 2017, pp. 3780–3790.

[38] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming
catastrophic forgetting with hard attention to the task,” in International
conference on machine learning. PMLR, 2018, pp. 4548–4557.

[39] S. Schelter, S. Grafberger, and T. Dunning, “HedgeCut: Maintaining
Randomised Trees for Low-Latency Machine Unlearning,” in Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data, 2021, pp. 1545–1557.

[40] S. Lin, X. Zhang, C. Chen, X. Chen, and W. Susilo, “Erm-ktp:
Knowledge-level machine unlearning via knowledge transfer,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 20 147–20 155.

[41] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 141–159.

[42] N. Carlini, M. Jagielski, C. Zhang, N. Papernot, A. Terzis, and
F. Tramer, “The privacy onion effect: Memorization is relative,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 13 263–
13 276, 2022.

[43] J. Ye, Y. Fu, J. Song, X. Yang, S. Liu, X. Jin, M. Song, and X. Wang,
“Learning with recoverable forgetting,” in European Conference on
Computer Vision. Springer, 2022, pp. 87–103.

[44] H. Jia, H. Chen, J. Guan, A. S. Shamsabadi, and N. Papernot, “A
zest of lime: Towards architecture-independent model distances,” in
International Conference on Learning Representations, 2021.

[45] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining
of machine learning models,” in International Conference on Machine
Learning. PMLR, 2020, pp. 10 355–10 366.

[46] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304–9312.

[47] S. Mercuri, R. Khraishi, R. Okhrati, D. Batra, C. Hamill, T. Ghasem-
pour, and A. Nowlan, “An introduction to machine unlearning,” arXiv
preprint arXiv:2209.00939, 2022.

[48] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified
data removal from machine learning models,” in International Confer-
ence on Machine Learning. PMLR, 2020, pp. 3832–3842.

[49] C. Dwork, “Differential privacy,” in Automata, Languages and Pro-
gramming: 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II 33. Springer, 2006, pp. 1–12.

[50] J. Brophy and D. Lowd, “Machine Unlearning for Random Forests,”
in International Conference on Machine Learning, sep 2020, pp.
1092–1104. [Online]. Available: https://proceedings.mlr.press/v139/
brophy21a.html

[51] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang,
“Graph Unlearning,” in Proceedings of the ACM Conference on Com-
puter and Communications Security, 2022, pp. 499–513.

[52] C. Chen, F. Sun, M. Zhang, and B. Ding, “Recommendation Unlearn-
ing,” in WWW 2022 - Proceedings of the ACM Web Conference 2022,
2022, pp. 2768–2777.

[53] A. A. Ginart, M. Y. Guan, G. Valiant, and J. Zou, “Making AI
forget you: Data deletion in machine learning,” in Advances in Neural
Information Processing Systems, vol. 32, no. NeurIPS, 2019, pp. 1–14.

[54] N. Su and B. Li, “Asynchronous federated unlearning,” in IEEE INFO-
COM 2023-IEEE Conference on Computer Communications. IEEE,
2023, pp. 1–10.

[55] Y. Liu, L. Xu, X. Yuan, C. Wang, and B. Li, “The right to be
forgotten in federated learning: An efficient realization with rapid
retraining,” in IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 2022, pp. 1749–1758.

[56] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh, “Remember what
you want to forget: Algorithms for machine unlearning,” Advances in
Neural Information Processing Systems, vol. 34, pp. 18 075–18 086,
2021.

[57] V. Suriyakumar and A. C. Wilson, “Algorithms that approximate data
removal: New results and limitations,” Advances in Neural Information
Processing Systems, vol. 35, pp. 18 892–18 903, 2022.

[58] R. Mehta, S. Pal, V. Singh, and S. N. Ravi, “Deep unlearning via
randomized conditionally independent hessians,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 10 422–10 431.

[59] G. Wu, M. Hashemi, and C. Srinivasa, “Puma: Performance unchanged
model augmentation for training data removal,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp.
8675–8682.

[60] R. Tanno, M. F Pradier, A. Nori, and Y. Li, “Repairing neural networks
by leaving the right past behind,” Advances in Neural Information
Processing Systems, vol. 35, pp. 13 132–13 145, 2022.

[61] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially
private empirical risk minimization.” Journal of Machine Learning
Research, vol. 12, no. 3, 2011.

[62] A. Warnecke, L. Pirch, C. Wressnegger, and K. Rieck, “Machine
unlearning of features and labels,” in 30th Annual Network and
Distributed System Security Symposium, NDSS 2023, San Diego,
California, USA, February 27 - March 3, 2023. The Internet
Society, 2023. [Online]. Available: https://www.ndss-symposium.org/
ndss-paper/machine-unlearning-of-features-and-labels/

[63] J. Martens, “New insights and perspectives on the natural gradient
method,” The Journal of Machine Learning Research, vol. 21, no. 1,
pp. 5776–5851, 2020.

[64] A. Golatkar, A. Achille, and S. Soatto, “Forgetting outside the box:
Scrubbing deep networks of information accessible from input-output
observations,” in Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX
16. Springer, 2020, pp. 383–398.

[65] A. Golatkar, A. Achille, A. Ravichandran, M. Polito, and S. Soatto,
“Mixed-privacy forgetting in deep networks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 792–801.

[66] T. Shibata, G. Irie, D. Ikami, and Y. Mitsuzumi, “Learning with
Selective Forgetting,” in IJCAI International Joint Conference on
Artificial Intelligence, 2021, pp. 989–996.

[67] X. Cao, J. Jia, Z. Zhang, and N. Z. Gong, “Fedrecover: Recovering
from poisoning attacks in federated learning using historical informa-
tion,” in 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2022, pp. 326–343.

[68] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete:
Gradient-based methods for machine unlearning,” in Algorithmic
Learning Theory. PMLR, 2021, pp. 931–962.

[69] Y. Liu, M. Fan, C. Chen, X. Liu, Z. Ma, L. Wang, and J. Ma, “Backdoor
defense with machine unlearning,” in IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, 2022, pp. 280–
289.

[70] R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representations of
quasi-newton matrices and their use in limited memory methods,”
Mathematical Programming, vol. 63, no. 1-3, pp. 129–156, 1994.

[71] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial intelligence and statistics. PMLR, 2017, pp.
1273–1282.

[72] H. Zhong, C. Liao, A. C. Squicciarini, S. Zhu, and D. Miller, “Back-
door embedding in convolutional neural network models via invisible
perturbation,” in Proceedings of the Tenth ACM Conference on Data
and Application Security and Privacy, 2020, pp. 97–108.

[73] J. Wu, Y. Yang, Y. Qian, Y. Sui, X. Wang, and X. He, “Gif: A general
graph unlearning strategy via influence function,” in Proceedings of the
ACM Web Conference 2023, 2023, pp. 651–661.

[74] J. Cheng, G. Dasoulas, H. He, C. Agarwal, and M. Zitnik, “Gnndelete:
A general strategy for unlearning in graph neural networks,” in The
Eleventh International Conference on Learning Representations, 2022.

[75] E. Chien, C. Pan, and O. Milenkovic, “Efficient model updates for
approximate unlearning of graph-structured data,” in The Eleventh
International Conference on Learning Representations, 2022.

[76] C.-L. Wang, M. Huai, and D. Wang, “Inductive graph unlearning,”
arXiv preprint arXiv:2304.03093, 2023.

[77] C. Pan, E. Chien, and O. Milenkovic, “Unlearning graph classifiers with
limited data resources,” in Proceedings of the ACM Web Conference
2023, 2023, pp. 716–726.

[78] X. Zhu, G. Li, and W. Hu, “Heterogeneous federated knowledge graph
embedding learning and unlearning,” in Proceedings of the ACM Web
Conference 2023, 2023, pp. 2444–2454.

[79] J. T. Wixted, “The role of retroactive interference and consolidation in
everyday forgetting,” in Current Issues in Memory. Routledge, 2021,
pp. 117–143.

[80] O. Hardt, K. Nader, and L. Nadel, “Decay happens: the role of active
forgetting in memory,” Trends in cognitive sciences, vol. 17, no. 3, pp.
111–120, 2013.

[81] J. Wang, S. Guo, X. Xie, and H. Qi, “Federated unlearning via class-
discriminative pruning,” in Proceedings of the ACM Web Conference
2022, 2022, pp. 622–632.

https://proceedings.mlr.press/v139/brophy21a.html
https://proceedings.mlr.press/v139/brophy21a.html
https://www.ndss-symposium.org/ndss-paper/machine-unlearning-of-features-and-labels/
https://www.ndss-symposium.org/ndss-paper/machine-unlearning-of-features-and-labels/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19

[82] Z. Izzo, M. A. Smart, K. Chaudhuri, and J. Zou, “Approximate data
deletion from machine learning models,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2021, pp. 2008–2016.

[83] M. Chen, W. Gao, G. Liu, K. Peng, and C. Wang, “Boundary
unlearning: Rapid forgetting of deep networks via shifting the decision
boundary,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 7766–7775.

[84] X. Lu, S. Welleck, J. Hessel, L. Jiang, L. Qin, P. West, P. Ammanabrolu,
and Y. Choi, “Quark: Controllable text generation with reinforced un-
learning,” Advances in neural information processing systems, vol. 35,
pp. 27 591–27 609, 2022.

[85] Z. Ma, Y. Liu, X. Liu, J. Liu, J. Ma, and K. Ren, “Learn to
forget: Machine unlearning via neuron masking,” IEEE Transactions
on Dependable and Secure Computing, 2022.

[86] Q. P. Nguyen, R. Oikawa, D. M. Divakaran, M. C. Chan, and
B. K. H. Low, “Markov chain monte carlo-based machine unlearning:
Unlearning what needs to be forgotten,” in Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security,
2022, pp. 351–363.

[87] Q. P. Nguyen, B. K. H. Low, and P. Jaillet, “Variational bayesian un-
learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 16 025–16 036, 2020.

[88] E. F. Villaronga, P. Kieseberg, and T. Li, “Humans forget, machines re-
member: Artificial intelligence and the right to be forgotten,” Computer
Law & Security Review, vol. 34, no. 2, pp. 304–313, 2018.

[89] H. Jia, M. Yaghini, C. A. Choquette-Choo, N. Dullerud, A. Thudi,
V. Chandrasekaran, and N. Papernot, “Proof-of-learning: Definitions
and practice,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 1039–1056.

[90] R. Zhang, J. Liu, Y. Ding, Z. Wang, Q. Wu, and K. Ren, ““adversarial
examples” for proof-of-learning,” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 2022, pp. 1408–1422.

[91] I. Shumailov, Z. Shumaylov, D. Kazhdan, Y. Zhao, N. Papernot, M. A.
Erdogdu, and R. J. Anderson, “Manipulating sgd with data ordering
attacks,” Advances in Neural Information Processing Systems, vol. 34,
pp. 18 021–18 032, 2021.

[92] X. Gao, X. Ma, J. Wang, Y. Sun, B. Li, S. Ji, P. Cheng, and
J. Chen, “Verifi: Towards verifiable federated unlearning,” arXiv
preprint arXiv:2205.12709, 2022.

[93] D. M. Sommer, L. Song, S. Wagh, and P. Mittal, “Athena: Probabilistic
verification of machine unlearning,” Proceedings on Privacy Enhancing
Technologies, vol. 3, pp. 268–290, 2022.

[94] J. Weng, S. Yao, Y. Du, J. Huang, J. Weng, and C. Wang,
“Proof of unlearning: Definitions and instantiation,” arXiv preprint
arXiv:2210.11334, 2022.

[95] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” Advances in neural information processing systems,
vol. 30, 2017.

[96] N. Takahashi, M. Gygli, and L. Van Gool, “Aenet: Learning deep audio
features for video analysis,” IEEE Transactions on Multimedia, vol. 20,
no. 3, pp. 513–524, 2017.

[97] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proceedings of the 28th international
conference on machine learning (ICML-11), 2011, pp. 689–696.

[98] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. pmlr, 2015, pp. 448–456.

[99] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris,
“Deep learning advances in computer vision with 3d data: A survey,”
ACM computing surveys (CSUR), vol. 50, no. 2, pp. 1–38, 2017.

[100] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. Ieee, 2013, pp. 6645–
6649.

[101] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and
C. Waites, “Adaptive machine unlearning,” Advances in Neural Infor-
mation Processing Systems, vol. 34, pp. 16 319–16 330, 2021.

[102] M. Jagielski, J. Ullman, and A. Oprea, “Auditing differentially private
machine learning: How private is private sgd?” Advances in Neural
Information Processing Systems, vol. 33, pp. 22 205–22 216, 2020.

[103] B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1895–1912.

[104] X. Hu, M. Yuan, J. Yao, Y. Deng, L. Chen, Q. Yang, H. Guan, and
J. Zeng, “Differential privacy in telco big data platform,” Proceedings
of the VLDB Endowment, vol. 8, no. 12, pp. 1692–1703, 2015.

[105] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[106] T. Eisenhofer, D. Riepel, V. Chandrasekaran, E. Ghosh, O. Ohrimenko,
and N. Papernot, “Verifiable and provably secure machine unlearning,”
arXiv preprint arXiv:2210.09126, 2022.

[107] A. Thudi, G. Deza, V. Chandrasekaran, and N. Papernot, “Unrolling
sgd: Understanding factors influencing machine unlearning,” in 2022
IEEE 7th European Symposium on Security and Privacy (EuroS&P).
IEEE, 2022, pp. 303–319.

[108] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv preprint physics/0004057, 2000.

[109] C. Molnar, Interpretable machine learning. Lulu. com, 2020.

	Introduction
	Background and Preliminaries
	Machine Learning
	Ensemble Learning
	Explainable AI

	Machine Learning Attacks
	Data Poisoning Attacks
	Membership Inference Attacks

	Machine Unlearning
	Problem Definition
	Application Scenarios of Machine Unlearning
	Challenges in Machine Unlearning
	Metrics for Machine Unlearning Algorithms
	Naive Retraining

	Exact Unlearning
	Overview of Exact Unlearning
	 Exact Unlearning based on SISA Structure
	Exact Unlearning for Random Forest
	 Exact Unlearning for Graph-based Model
	Exact Unlearning for k-means
	Exact Unlearning for Federated Learning (FL)
	Improvements of SISA

	Non-SISA Exact Unlearning
	Comparisons and Discussions

	Approximate Unlearning
	Overview of Approximate Unlearning
	Approximate Unlearning based on Influence Function of the Removed Data
	Approximate Unlearning based on Re-optimization after Removing the Data
	Approximate Unlearning based on Gradient Update
	Approximate Graph Unlearning
	Approximate Unlearning based on Novel Techniques

	Critical Issues of Machine Unlearning
	Performance and Privacy Issues of Unlearning
	Machine Unlearning and the Right to Be Forgotten
	Proof of Unlearning
	Unlearning and Explainable AI

	Potential Research Directions
	Unlearning for Diverse Data Structures
	Unlearning for Non-convex Models
	User-Specified Granularity of Unlearning
	Privacy Assurance for Unlearning
	Quantitative Evaluation Metrics

	Conclusion
	References

